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ABSTRACT

The main thrust of this work has been to analyze basic hand grips and sensor interactions
that a dextrous robot hand will need as part of the operation of an EVA-Retriever.

The work focused on understanding what is to be done with a dextrous robot hand and
how such a complex machine might be controlled. It was assumed throughout that an
anthropomorphic robot hand should perform tasks just as a human would; that is to say,
at least initially, the most efficient approach to developing control strategies for the hand
would be to model actual human hand actions and do the same tasks in the same ways!.
Therefore, a Heuristic approach to control was developed.

The tasks performed by human hands are extremely complex involving the movement of
many fingers and joints and contact between numerous surfaces, that is, contact at an
infinity of points. In addition, multiple sensors including force/touch, vibration, shear and
sometimes heat must be taken into account. Each movement and task involves a
multitude of these force/touch interactions and a number of sub-sequences and events, the
aggregate of which, can only be termed a skill. In addition, I have tried to understand just
what is to be done with a dextrous hand. Therefore, basic hand grips that human hands
perform, as well as hand grip actions were analyzed.

It was also important to examine what is termed sensor fusion. This is the integration of
various disparate sensor feedback paths. These feedback paths can be spatially and
temporally separated, as well as, of different sensor types. Neural Networks? are seen as a
means of integrating these varied sensor inputs and types. Basic Heuristics of hand
actions and grips were developed. These Heuristics offer promise of control of dextrous
robot hands in a more natural and efficient way. Emphasis was also placed on possitle
methods of implementing these techniques. Future work will be to continue development
of routines and Heuristics and use them to control the Utah/M.LT. dextrous robot hand.
A smart robot hand, one that can adapt to new situations and develop new skills is a goal
of researchers working with dextrous robot hands. It is an ultimate goal that a smart hand
will be able to develop its own Heuristics which will make its operation and use even
more efficient and its control more simple.
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Introduction

The EVA-Retriever

The EVA-R will evolve into a completely autonomous mobile robot. The robot will be
used for retrieving objects which have floated free from Shuttle or Station and will secure
or stabilize objects as need be. EVA-R can be used to assemble structures and as a
general Astronaut’s assistant. The robot will have a vision system and possibly some
form of laser ranging device. It is expected that the EVA-R will be able to recognize tools
and other objects and upon voice command locate, identify, track and retrieve them.
EVA-R will ultimately use tools to perform work assignments.

Figure 1. Extra Vehicular Activity-Retriever (EVA-R)

As can be seen in figure 1., the EVA-R will reside in an MMU and will have two. arms.
At least One arm will have a smart dextrous hand like the Utah/M.L.T. hand.

An autonomous mobile robot will require several new and emerging technologies.
These include :

1. Neural Networks which have been trained to identify and interpret sensory input.

2. Al languages such as CLIPS that can interface with the neural networks and be
programmed to deliver higher level commands to the robot and aid in task planning
and execution.

3. Dynamic adaptive task planners** which can make decisions based on sensory
information, task safety, present and evolving conditions, changing goals, and
previous experience.
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4. The robot must have the ability to learn from its experiences and discard useless
information. This type of learning by the robot may possibly be implemented through
neural networks.

5. Dextrous hands for using tools and performing skilled tasks.

6. Touch sensors and vibration/feeling sensors incorporated into the hand at appropriate
places.

7. Vision sensors and ranging sensors for navigation and identification of objects.

8. Voice Recognition and understanding so that it can carry out command given by an
Astronaut.

Development of Neural Network technology is key to the the implementation of a fully
functioning autonomous mobile robot. Whether the neural networks are hard-wired or
simulated they will require faster chip computational speeds and large amounts of
nonvolatile memory. The various components of the robot must have separate and
parallel networks. The hand will have neural networks for sensing which will be distinct
from the vision networks and voice recognition networks. A guidance navigation and
balance network would be used to integrate and interpret the various outputs of the other
nets. Layered between the networks would be an Al language such as CLIPS. A top or
overseeing Al layer would manage the robots activities.

The Utah M.L.T. Dextrous Robot Hand

Figure 2. The Utah/M.LT. Dextrous Robot Han

The Utah/M.L.T. dextrous robot hand is a four fingered hand with each finger having
multiple joints. This includes one thumb which opposes the three fingers. There are three
joints in each finger which serve to curl the finger, and one base joint which rotates the
entire finger back and forth in the plane of the palm. The hand is capable of graceful and
delicate movement just as a human hand is and, therefore, can perform many human hand
actions.




Findings

Kinematics

To study control strategies and simulate hand actions a kinematic solution of the hand
was sought. A typical finger is considered and can be referred to a single point or
coordinate system in the palm. Using the Denavit-Hartenberg notation, the position and
orientation fingertip is expressed as a series of matrix transformations.

Figure 3. FINGER KINEMATIC STRUCTURE

The transformation from the reference coordinate system (X,.Y,Z,) to a typical fingertip
(X,Y2,Z,) is given by

The fingertips position and orientation are given by :

(1) T=AAJAZAJAACAS

A}-! are matrix transformations that give the coordinate system at point i along link /; from
i-1th joint i-1 to ith joint %6. Since A and A; are constant matrices let

@) T =@AA)'T

nl tx bx PX
« |n, t, b, P
3) T°=|"? 7 v "»
( ) nt tx bt Pl
0O 0 0 1
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The upper left hand 3x3 contains the direction cosines that give the orientation of the
fingertip and the first three elements of the fourth column give the position of the
fingertip from the (X,,Y,,2,) coordinate system.

Using the Denavit-Hartenberg Notation a homogeneous transformation from the i-1th
joint to the ith joint along link / is :

cos®, -—sinB;coso; sin§;sina;  g;cos;

A = sin®, cos6,cosa; —cosH;sine a;sinb;
' 0 sin o cos oy d,
0 0 0 1

where 6, is a rotation of the revolute joint i, 4 is for a prismatic joint (here = 0), g; is the
link length, and o is the link twist. For a typical finger
cos®, -—sin®, O [ cosH,
sin®, cos®, O [sin6,
0 0 1 0
0 0 0 1

A=

0,8, are constant. o,=0,0,=n722 and ,=0. For convenience 6,=0. Then o,=6,. Also,
0, = 30° and a, = 0. Therefore, 4] is a constant matrix.

cos®, 0 sin6, O) 1 0 0 A
Al = sin, 0 =-cosB, O A2 = 0 cos®, -sinB; O
2 0 1 0 0 i 0 sinB; cos6; O
o o 0 1 0 0 0 1
and fori = 4,5,6,7 the transformations and their inverses are ’
cos®;, -sin®;, O [cosH, cos®, sin®, 0 -/
Al = sin®, cos®, O /[sin6, @ :-,)-1 _| —sin 6, cos6, 0 O
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
from (2.)

T =AZAJAJACA;

Postmultiplying both sides by ™ yields.
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T'(A5)" = AJAJAA;
Premultiplying both sides of the equation by )" equating both sides and solving for 6,.

AT A =AM

cos04(P, —Lin,) —sin6,(P, - Ln ) =0

P,-Ln
0, = tan™| 2%
3 (P,-—I-;n,)

Solving for 6, . Let

W=(A242) T =AASAS

AW =AAS

Equating sides evaluating and solving yields :

W.
6, = tan”'[ ==

Solving for 64,8, in a similar fashion.

A" AW = A

0. = tan” Wi3c0s 05+ Wo,sin O
=tan "
6 W3 sin 5+ Wy, cos 65

Taking the ratio of the 2,4 term to the 1,4 term and solving yields :

0. = tan™! P, (cos O5cos B4 - sin B5sin B¢) — P,(cos B sin O + sin B5cos B;) + 5 sin B4
’ P,(cos 85c0s ¢ — sin 85 sin B¢) + P, (cos O sin B + sin 05 cos Bg) — Is cos O — I

In the above relations :
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W,y =b,cos8,+b, cos8,sin6,+b,sinB;sin6,

Wy, =—=b,sin8,+ b, cos8,cosB,+b,sin6;cos 8,

Transforming back to the base coordinate system (X,.YoZ,) from the (X,¥,2,) coordinate
system.

B, =c0s0,(B,,c0s 0, + B ,5in8,) +5in 6,(B,,cos 6, ~ B,,sin )

B, =cos6,(B,,sin8, - B ,cos0,) +5in ,(B,,cos 6, + B, sin 6,)

P, =c0s0,(P,,cos8,+ P ,sin6,) +sin 6,(P ,cos 0, — P osin6,) — 1, cos O,
P, =c0s8,(P,,sin0,— P ,c0s6,) +sin 9,(1’,,‘0 cos6,+P ,sin0)) ~ 1/ sin 0,
N, =c0s0,(N,(c0os0,+ N ,5in 8,) + sin 6,(N,,c0s 0, =N 4sin 0,)

N, =c0s8,(N,,sin8, =N (c0s8,) +sin 6,(N,,cos 8, + N, 5in 6,)

B,=B,, , N,=N, , P,=P,

y

The Thumb is opposite the fingers operates in an opposing direction.
In this case :

0,=§,+m, 6,=m2.

Traditional Kinematics Versus the Heuristic Approach

Traditional mathematical approaches involve dynamic modeling with the equations of
motion. These models solve for end effector orientation, position, motions, and forces;
also joint angles and torques. This is feasible for robots and machines with few degrees of
freedom and simple geometries. However, Even for relatively simple robot mechanisms,
the mathematics can be intractable. The complexity of a dextrous robot hand and the need
to include smart and adaptive control suggests the use of heuristic methods. Asada and
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Slotine® page 185 state, " ... very few manipulators are capable of such seemingly simple
tasks as driving a screw or turning a crank." They were discussing a class of problem
called Compliant Motion control which they define as " ... concerned with the control of
a robot in contact with its "environment" - an object to manipulate or assemble ...".

The difficulties of compliant motion control when there are only a few points of contact
between the manipulator and the work piece further point out the futility of using
traditional mathematical approaches. This is especially true when a dextrous hand is
concerned and there are an infinite number of points, indeed surfaces, which are in
contact with an object being manipulated. A purely mathematical approach would require
major breakthroughs and brand new insights.

As further evidence, Jacobsen, co-inventor of the Utah/MIT hand 4, in his speech to the
Space Operations Automation and Robotics SOAR Conference at NASA/JSC August 6,
1987 stated of the dextrous hand he had created, "we really don’t know how to control
these things". He went on to state that you must understand what it is you really want to
do with them. For example, what is a grip and how do you do various grasps.

Insight into the efficient performance of manipulator tasks is easily obtained by close
observation of ones own manual skills and abilities. The proper placement and number of
contact sensors is important. It is also of primary importance to examine the issues of
what is termed sensor fusion. This is the integration of various disparate sensor feedback
paths, spatially, temporally and sensor type (touch and vision for example).

The Heuristic Approach

Webster defines heuristic as follows : Serving to guide, discover, reveal. Valuable for
stimulating or conducting empirical research but unproved or incapable of proof.

Used here, it is the development of Al techniques to control ROBOT devices. Heuristic
approaches offer advantages in that they allow controlling the robot hand in human-like,
complex operations and motions which are difficult if not impossible to describe in a
mathematical fashion at the present time. They involve developing rules of thumb and
implementing them in an Al sense. This does not rule out the melding of traditional
control and mathematical structure with Al-control,learning and expert system supervi-
sion’. There could be control on a machine or low level by kinematic and dynamic
analysis with Robustness and flexibility supplied by expert systems. An implementation
might involve the use of neural networks for low (machine) level control. Neural nets
would develop skills in performing tasks in a fashion similar to the development of
dextrous skills in a human. The ultimate test of a particular implementation will be the
ability of the robot to perform tasks in new and unfamiliar situations and the ability to
make judgement type decisions when needed.
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Classification of Hand Actions

An understanding of how a hand performs a particular task is gained by understanding
what those tasks are. Hand Actions are developed as a means of classifying the various
tasks to be performed by the dextrous robot hand.

After an object has been gripped, there are many actions that are possible. A few basic
actions that the hand will have to perform are listed below.

 Holding : Maintenance of a grip

o Pulling :  Grip + Holding + Force in the direction of the wrist

« Pushing : Contact with an object + a Force away from the wrist

* Feeling : Contact with an object to discover its characteristics.

« Rotating : Grip + Wrist rotation accompanied by a possible sinusoidal

movement of the fingers.

o Turning :  Grip + Force in the direction of the palm and perpendicular

(wrench) to the wrist axis.

Common among hand actions are grips. To understand how to perform the various
hand actions listed above it is necessary to first study grips and grip primitives. These
are basic contact configurations that a dextrous hand must be capable of performing.

Classifications of GRIPS

« Gripping : is the act of securing an object with the hand.

» Grip : A grip which is used to hold an elementary object or
Primitive object type and is distinguishable from other grips by a
unique geometric pattern of the fingers.

» Elementary : From a gripping point of view , all objects are
Object composed of elementary objects such as cylinders,
spheres,large planar surfaces, etc.

Grips can be divided into states that are generally distinguishable from each other by
their geometry, function or some combination thereof. A grip for an object type can
be scaled within limits as a function of object size. A heuristic can handle the break
down of scaling.
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Spherical and Cylindrical Grips

I ELEMENTARY GRIP PATTERN CHART

1
| OBJECT FINGER/JOINTin°| 0 | 1 | 2 3 ﬂ
CYLINDER |THUMB 0 o 0 )
ROD FINGER 1 o " " "
FINGER 2 " " " " I
FINGER 3 " . L " ﬂ
CYLINDER |THUMB 45 | 0 o[ o
LEVER FINGER 1 o o o o |
FINGER 2 N " "
FINGER 3 " " " "
SPHERE  |THUMB | 0 | ¢ | ¢ | o
| FINGER 1 w o " "
| FINGER 2 o] " "
n FINGER 3 p | -1 =j

H=maxZ , ¢=2tan"'(l/2r)

The angles ¢ are calculated with equal length finger links. Actual angles can be
determined using the kinematics calculations or by measurement with the robot hand.
The chart above serves to illustrate the general relationship between the angles. In a
Spherical or Cylindrical Grip it is the thumb and the 0 joint that give a grip its unique
configuration.

*For a cylindrical lever grip, the thumb is rotated along the axis of the shaft. Presently,
the Utah/M.LT. hand cannot rotate the full 90 degrees to accomplish this. The hand can
only rotate = +45° from the normal to the plane of the palm. A future version of the hand
will be capable of rotating +90°: (personal conversation with Jacobsen).



Flat Surface Grips

A flat object, from a one handed gripping perspective, is one in which the only grip
opportunity arises on a side of the object and the fingers and thumb are in contact with
opposite parallel faces of the object. There are generally three sub categories of grippable
flat objects.

[ FLAT SURFACE GRIP PATTERN CHART |
OBJECT  |FINGER/JOINTin°| 0 | 1 | 2 | 3 %
SMALL THUMB o] oo o
EDGE :

Fon-massive FINGER 1 0 ¢ ¢ ¢ H

| (FINGERTIP) |FINGER 2 o | | ] "1

FINGER 3 0 " " " “
SMALL THUMB %0 | o0 0
EDGE
non-massive |FINGER 1 0 ¢ ¢ ¢
(PINCH) FINGER 2 0 " " "
FINGER 3 0 " " "]
[ massive THUMB 5] 0] 0] o |
_{(PALM GRIP) |FINGER 1 o {9 | o 0
depends on FINGER 2 0 90 0 0
edge width  |FINGER 3 0o | 90| o 0 J

[LARGE EDGE|THUMB 0 | 0] 0| %
(Largest FINGER 1 0 0 0 90
Grasp) FINGER 2 0 0 0 | 9%

FINGER3 0 0 o | % |
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1. Small Edge Non-Massive object: The edge width is less than the distance from thumb
base to finger base. In this case a fingertip grip is used. Another grip can be used in
this case, with the thumb and first finger. The sheet rests against the outer side of the
first finger and presses or pinches the sheet against this finger. The remaining fingers
are closed against the palm to give support to the first finger.

2. Small Edge Massive object: The edge width is less than the distance from thumb base
to finger base. The object is massive relative to hand strength so that a firm grip is
needed. The palm of the hand is used as a support platform and the fingers secure the
object. To do this the thumb is rotated 90° so that it aids in the platform that the palm
makes. This platform is placed on one side of the flat object. The fingers then wrap
around the edge of the object. One comner of the edge (the corner farthest away from
the palm) rests in a 90° bend formed by the finger joints. This bend is formed as close
to the palm as possible (for strength of grip) at the same joint level in all fingers.

3. Large Edge: The edge width is greater than the distance from thumb base to finger
base but less than the distance between the outer most finger joints and thumb joints
when all joints are at O angle. In this case, a minimum distance between the object
edge and the palm of the hand and maximum finger and thumb surface area contact
with the object is sought.

Altered Grips

These are grips that are used with any object ,even an elementary object for which
there is a grip primitive. They are used to grip the object in a different fashion to serve
a different purpose. For example, a screw driver is basically a cylinder but when this
tool is to be used, a cylindrical grip primitive is altered so that a force along the axis
of the screw driver can be applied and a wrist turning motion along the arms axis is
performed. An altered grip can be thought of as a task grip.



Task or Tool Grips

A tool from a gripping perspective is composed of elementary objects (see Classification
of Hand Actions). However, when a tool is used the grips that are used are not elementary
grips but are grips that take into account the forces and motions that are needed to
perform a task.

Most EVA tools have cylindrical handles or handles that can be gripped with a
cylindrical grip 1.

The tool generally lays across the palm of the hand. For example a flashlight, hammer or
screwdriver. An automatic screwdriver or drill which has a gun configuration is used with
a cylindrical type grip. The trigger is actuated by the first finger which uses a variable
cylinder configuration.

TASK/TOOL GRIP PATTERN CHART ]

FINGER/JOINT in°| 0 1 2 3 ]|
SCREW THUMB 9% | 0 0 0
DRIVER
FLASH FINGER 1 o | 56| ¢ o
LIGHT
HAMMER |FINGER 2 o |56 "
FINGER 3 o 0 " 2
ELECTRIC |THUMB 0 0 0 0 |
DRILL FINGER 1 o | x | x
FINGER 2 N | o o o
FINGER 3 o [ " | - "

In the Electric Drill grip X is a variable angle representing the pulling of the trigger.
0<X<¢.

3-14



Interpolated Grips

This type of grip is a combination of other grips (Elementary/Task) and is used to
create or compose a new grip of an object whose grip is not known. An example of an
interpolated grip would be a manual gear shift lever in an automobile that is a long
cylindrical shaft with a spherical knob on top.

| INTERPOLATED GRIP PATTERN CHART
OBJECT __ |FINGER/JOINTin°| 0 1 2 3
GEAR SHIFT |THUMB 90 [ o | o | o |
(Spherical FINGER 1 M o )
top) FINGER 2 0 0 " "
FINGER 3 0 ¢ " "
VALVE- THUMB wl e o 0
HANDLE or |FINGER 1 w | o o )
DOOR KNOB |FINGER 2 0 20 | 20 | 20 |
(Spherical)  |FINGER 3 90 | 90 | 90 | 9 |

These are a two examples of interpolated grips. It is necessary to develop an Interpolated
Grip Strategy in order to create a truly smart hand.



Location of Sensors

LOCATION of CONTACT SENSORS CHART ]
GRIP “[FINGERLINK[PALM] 1 2 3
FLAT  SUR-|THUMB 0 1 1 1
FACE
SMALL EDGE |FINGER 1 0 0 0 1
(FINGERTIP) |FINGER 2 0 0 0 1
FINGER 3 0o | 0o | o 1
(PINCH) THUMB o | 1t | 1 1
FINGER 1 0 side side side
FINGER 2 0 0 0 0
FINGER 3 0 0 0 |
SPHEREor _ |THUMB 1 1 1 1|
CYLINDER __ |FINGER 1 1 1 1 1
FINGER 2 ) ) ) )
FINGER 3 1 1 1| 1
IVALVE THUMB 1 1 1 1 |
DOOR KNOB |FINGER 1 1 1 1 1
FINGER 2 1 side side side
FINGER 3 o | o 0 0

A necessary condition to perform various human like grips and tasks is the use of contact
sensors. Particular grips require the placement of touch sensors in specific locations. The
chart above was created using grips from several other charts. A zero indicates no sensor
needed and one indicates the need for a sensor at that location. Although only one chart is
given the chart indicates that a contact sensor is needed at each link and also in the palm
at the base of each finger. In addition, sensors are needed along two of the fingers. Finger
one requires sensors along the outside (right side looking toward the palm) at every link
and finger two will require sensors on the same side as finger one on the two end links.
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Grip Alteration Action

A Grip Alteration Action is used to change from one grip to another. The reasons for
doing this are to position the object differently in the hand for a particular purpose. Those
purposes could range from attaining a more secure grip to a specific grip that is used with
a tool. Some tools require a changing grip for their use such as an automatic drill/screw
driver. Using a hammer on earth requires grip alteration during usage. A hammer grip
slides on the hammer shaft allowing gravitational effect plus the lever effect to increase
its kinetic energy. In the case of a tool, there may be several grip alteration actions that
are used. ' :

Clips and C

CLIPS is a forward chaining language developed at NASA/JSC 21314 by the Al section of
the Mission Planning and Analysis division. It is written in the C language and is closely
associated with C. C programs can be called from CLIPS and C programs can call CLIPS
routines. It also has interfaces to ADA and Fortran although these are not as easy as with
C. The language is easy to learn and affords easy implementation of pattern matching.

Heuristic Control Using CLIPS
As an example of a control structure using CLIPS

(defrule grab-handrail
1 <- (close-hand standard-handlel ?speed)
;If the pattern above matches a fact that had been
;previously asserted, this rule will be put on the
;agenda and will be ready to fire. Also, the variable
;?speed is instantiated with the value located at that
;position in the pattern.
=2
(retract 7f1)
(assert (status good-grab = (grab standard-handlel ?speed))))
;grab is a ¢ routine that does the actual hand closing.
;status good-grab is asserted as a new fact.

Neural Networks and C

A Neural Network Simulator written in C is being developed at NASA/JSC:s by the Al
section of the Mission Planning and Analysis Division. C routines and therefore, CLIPS
routines should be callable from this environment and visa versa. At present the networks
are back propagation.

A spatial-temporal neural network* could be used to fuse and integrate sensory feedback
in the hand. Given point contact sensors, as opposed to an array of sensors, one at each
link and one or more in the palm of the hand a simple spatial-temporal network could be
developed and trained to recognize space-time patterns of contact. If the space-time
pattern of contact approximates a pattern that had been previously learned then that
pattern would be recognized and further action could or could not be taken based on that
outcome. For example, theré are typical space-time contact patterns that arise in the
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gripping of a cylinder. Assuming that the object had been previously identified as a
cylinder a particular space-time contact pattern would confirm that the proper grip on the
cylinder had been made. That pattern, might first include palm contact, followed by base
finger link contacts and so on, out to the fingertips. If a neural network implementation
operated in real time a deviation from that pattern during grip execution could possibly
signal that corrective action is necessary to complete and secure the grip. In addition,
given a real time network, palm contact could signal to the controlling software to begin
the cylindrical grip. Alternatively, the actual grip could be implemented by a neural
network that had been trained to respond to patterns of contact input.

* J. Freeman, Ford Aerospace, Johnson Space Center, personal conversation.

Heuristic Grip Summary
1. A Cylindrical grip primitive can be used for most objects.
2. Grip as close to the center of mass as possible'.

3. If the object’s characteristic length (in the grip region) is L, <3/4L,., the distance
from the wrist to the fingertips, a one-handed grip will probably work.

4. For objects with characteristic lengths (in the grip region) L, </, +1,,., the two outer
finger link lengths and F,.../M.,,.. « 1 a fingertip grip can be used.

3. Use hand sensors touch and vibration to determine if grip is slipping.
4. Touch sensors are used to signal the beginning of a grip action.

5. Use vision sensors for sufficient condition confirmation that a grip has been
successfully made.

6. Plan Grip Action Script and continuously monitor safety during execution.

7. In general it is the thumb and O joint that give a grip its unique configuration and
therefore function.
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Conclusions

Future Work and Recommendations

The work reported in this paper is by no means exhaustive. It serves to illuminate a path
that can be followed with what I feel will be real tangible results and successes in the
development of an autonomous robot with a dextrous hand. The fabric which ties all of
the components together will be the development and application of Neural Networks to
sensors and learning, further development of an Al language such as CLIPS that can
easily interface the Neural Networks, and the development of a dynamic adaptive task
planning strategy. Also, it is necessary to develop an Interpolated Grip Strategy in order
to create a truly smart hand. This would be part of the dynamic adaptive task planner.

Recommendations

Sensors : Contact sensor are needed at each link and also in the palm at the base of each
finger. Sensors are needed along the side of two of the fingers.

Neural Network research should be applied the sensor fusion problem.
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